[0016] FIG. 2A shows the design of amino acid substitutions in UBS-54 CDR-H3 to fine tune the affinity of EpCAM targeting CARs. [0017] FIG. 2B shows the recombinant EpCAM binding to MYC-tagged CARs expressed in HEK293T cells. X axis: binding of Alexa Fluor 647 labeled recombinant EpCAM. Y axis: binding of anti-MYC antibody [0018] FIG. 2C shows the effector to target (E:T) assay for measuring target killing by primary T cells transduced with different EpCAM targeting CARs. Each target was separately incubated with different CAR T cells or non-transduced T (NT) cells at 1:1 E:T ratio. Percent of cytolysis was normalized to luminescence from target cell only. [0019] FIG. 2D uses Real Time Cell Analyzer (RTCA) to measure primary epithelial cells killing by EpCAM targeting CAR T. Each primary epithelial cell target was separately incubated with CAR T or NT cells at 1:1 E:T ratio. Percent of cytolysis was normalized to target cell only. X axis: Time, Y axis: percent of cytolysis [0020] FIG. 2E shows the IFN- γ release measured by ELISA for each CAR T variant after co-incubation with different target cells for 24 hours at E:T=1:1. [0021] FIG. 2F shows the IL-2 release measured by ELISA for each CAR T variant after co-incubation with different target cells for 24 hours at E:T=1:1. ## DETAILED DESCRIPTION OF THE INVENTION ## Definitions [0022] As used herein, "about" refers to $\pm 10\%$ of the recited value. [0023] As used herein, "adoptive T cell therapy" involves the isolation and ex vivo expansion of tumor specific T cells to achieve greater number of T cells than what could be obtained by vaccination alone. The tumor specific T cells are then infused into patients with cancer in an attempt to give their immune system the ability to overwhelm remaining tumor via T cells which can attack and kill cancer. **[0024]** As used herein, "affinity" is the strength of binding of an antibody (e.g., EpCAM antibody) to its antigen (e.g., EpCAM). Affinity is typically measured and reported by the equilibrium dissociation constant (K_D or Kd), which is used to evaluate and rank order strengths of bimolecular interactions. [0025] As used herein, a "chimeric antigen receptor (CAR)" means a fused protein comprising an extracellular domain capable of binding to an antigen, a hinge domain, a transmembrane domain, and at least one intracellular domain. The receptor is chimeric because they combine both antigen-binding and T-cell activating functions into a single receptor. The "extracellular domain capable of binding to an antigen" means any oligopeptide or polypeptide that can bind to a certain antigen. The "intracellular domain" means any oligopeptide or polypeptide known to function as a domain that transmits a signal to cause activation or inhibition of a biological process in a cell. [0026] As used herein, a "domain" means one region in a polypeptide which is folded into a particular structure independently of other regions. [0027] As used herein, a "single chain variable fragment (scFv)" means a single chain polypeptide derived from an antibody which retains the ability to bind to an antigen. An example of the scFv includes an antibody polypeptide which is formed by a recombinant DNA technique and in which Fv regions of immunoglobulin heavy chain fragment (V_H domain) and light chain fragment (V_L domain) are linked via a spacer sequence. Various methods for engineering an scFv are known to a person skilled in the art. scFv can be in a format of V_H -linker- V_L or V_L -linker- V_H . The linker can be 2-30 amino acids, preferably 5-20 amino acids. [0028] As used herein, a "tumor antigen" means a biological molecule present in tumor and having antigenicity. ## Description [0029] Chimeric antigen receptor (CAR)-T cell therapy has shown robust anti-cancer responses in hematologic malignancies. However, application of CAR-T cell therapeutic approach to solid tumors has been hindered by multiple challenges, one of which is on-target/off-tumor cytotoxicity to normal tissues. Tumor-specific antigens exclusively present on tumor cells are rare. Most CAR-T cells are designed to target tumor associated antigens (TAAs) expressed in high levels on tumor cells. Yet, normal tissues express these antigens as well, albeit at much lower densities. [0030] Epithelial cell adhesion molecule (EpCAM) is highly expressed in epithelial cells and overexpressed in tumor cells in a variety of epithelial carcinomas. High-affinity (nM range) EpCAM-targeting CAR-T cells kill both normal human epithelial cells and EpCAM-high tumor cells in vitro. To mitigate the on-target/off-tumor cytotoxicity, the inventors developed a strategy for fine tuning the affinity of CARs to selectively target tumor cells. [0031] Huls, et al (Nat Biotechnol. 17, 276-281 (1999)) isolated a huMab UBS-54 (UBS-54) that was specific for EpCAM with an affinity of 5 nM. The V_H and V_L sequences of UBS-54 are shown in U.S. Pat. No. 7,777,010, and are incorporated herein by reference. The inventors selected CDR3- V_H of UBS-54 for engineering antibodies with different affinities to EpCAM because CDR3 of V_H occupies a centric position in the antigen binding surface and has the most diversity. [0032] The present invention provides anti-EpCAM antibodies with different affinities to EpCAM. Because the heavy chain variable CDR3 region (CDR-H3) occupies a centric position in the antigen binding surface and has the most diversity², the inventors have engineered CDR-H3 for affinity tuning. [0033] The present invention is directed to an antibody or its antigen-binding fragment that binds to EpCAM, wherein the CDR-H3 has the amino acid sequence DPFLHA (SEQ ID NO: 6), DPFLHL (SEQ ID NO: 7), DPFLHV(SEQ ID NO: 8), APFLHY(SEQ ID NO: 3), DPFAHY(SEQ ID NO: 5), or DPFLHF(SEQ ID NO: 9). [0034] In one embodiment, the heavy chain variable CDR1 of the antibody or its antigen-binding fragment has the sequence of GGTFSSY (SEQ ID NO: 10) and the heavy chain variable CDR2 has the sequence of IPIFGT (SEQ ID NO: 11). [0035] In one embodiment, the light chain variable CDR1 of the antibody or its antigen-binding fragment has the sequence of RSSQSLLHSNGYNYLD (SEQ ID NO: 12), the light chain variable CDR2 has the sequence of LGSN-RAS (SEQ ID NO: 13), and the light chain variable CDR3 has the sequence of MQALQTFT (SEQ ID NO: 14).